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A new path integral formulation for the q-state Potts model is proposed. This 
formulation reproduces known results for the Ising model (q = 2) and naturally 
extends these results for arbitrary q. The mean field results for both the Ising 
and the Potts models are obtained as a leading saddle point contribution to the 
corresponding functional integrals, while the systematic computation of correc- 
tions to the saddle point contribution produces the Onsager reaction field terms, 
which for q = 2 coincide with results already known for the Ising model. 
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1. I N T R O D U C T I O N  

Use of path integral methods for the Ising model is standard by now. (~ 
Some time ago, Zia and Wallace extended the path integral treatments for 
the Ising model to the case of the Potts model. (2) Their work was subse- 
quently accepted and widely used by researchers in the field of critical 
phenomena. (3'4) Although the results of their work are quite suitable for the 
subsequent field-theoretic renormalization group analysis, the treatment of 
the Potts model which they have developed considerably differs from the 
case of the Ising model as far as the noncritical properties of both models 
are concerned. Indeed, for the case of the Ising model, it is rather 
straightforward to obtain the familiar mean field results for arbitrary per- 
missible values of the order parameter. These mean field results can be 
corrected by the Onsager reaction field terms to be described below. With 
these corrections, the mean field results are widely used in the theory of 
spin glasses, for example, within the framework of the TAP approach. (6) 
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This is not the case so far for the Potts spin glass, (7~ where the analogous 
extension of the mean field results is lacking, so that one is forced to begin 
with the free energy functional, which has only a plausible resemblance to 
what is considered to be the improved mean field approximation to the 
Potts model. 

So far, the Onsager reaction field corrections to the mean field results 
have been obtained on the basis of intuitive physical arguments which are 
very transparent as far as the Ising model is concerned, as it described 
below in Section 2. The same arguments become much more vague when 
applied to the Potts model. Recently, Dekeyser et  al. ~8) made an attempt 
to extend Onsager's original idea to the case of the Ports model. They 
were motivated by the observation that the mean field treatment of the 
Potts model produces the first-order phase transition for q > 2  (9) for a// 
dimensions, while it is well known (1~ that for d =  2 the first-order phase 
transition takes place for q > 4 and is continuous for q = 4. So they hoped 
that the inclusion of the Onsager reaction terms will raise the lower mean 
field estimate, q > 2. Unfortunately, they have not succeeded in providing 
systematic corrections to the mean field results which contribute to the 
Onsager reaction field. 

Here, I provide a systematic derivation of the Onsager reaction field 
terms for the Ports model in complete analogy with similar results for the 
Ising model, which I also rederive with the use of the path integrals 
methods. This work is organized as follows. In Section 2, the path integral 
method for the Ising model is discussed in details sufficient for the purposes 
of reproducing the Onsager reaction field corrections. The mean field 
results for arbitrary permissible values of the order parameter mi are 
obtained as a leading saddle point contribution to the functional integral, 
while the Onsager corrections come from the treatment of fluctuations 
around the mean field. The ideas and methods of this section are extended 
for the case of the Potts model in Section 3, where a new path integral 
presentation of the Potts model is given along with the rederivation of the 
known mean field results for arbitrary values of mi. This rederivation was 
not available with the use of the other known path integral methods for the 
Potts model. (2) Computation of the fluctuations around the mean field is 
presented for the case of the Potts model in Section 4. In this section 
closed-form, one-loop corrections to the mean field results are obtained 
along with the Onsager reaction field terms. It is demonstrated that the 
fluctuation corrections at the one-loop level do no t  change the mean field 
conclusion about the first-order phase transition taking place for q > 2 .  
Section 5 is devoted to a brief discussion. 
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2. PATH INTEGRAL REPRESENTATION FOR THE 
ISING M O D E L  A N D  THE ORIGIN OF THE 
ONSAGER REACTION FIELD 

The mean field magnetization m i at the site i for the case of the Ising 
model placed on a d-dimensional hypercubic (for simplicity) lattice with 
the total number of sites No can be obtained as the solution of equation 

m i = tanh(/?hi) (2.1) 

where "hi = Hi + Z Jomj, with hi an external field at the site i, and /3 an 
inverse temperature. Typically, the lattice coupling constant Jij is nonzero 
only for the nearest neighbors. Equation (2.1) provides an exact solution 
for the Ising model in cases (a) when the range of interactions Jo is infinite 
or (b) when the dimensionality d (or the coordination number z of the 
lattice) goes to infinity. If the coupling constants Jij are independent 
random variables (usually Gaussian distributed), Eq.(2.1) becomes 
incorrect even for the case of infinite range of interactions (at least for the 
Sherington-Kirkpatrick type of spin glass, (11~ for example) and need to be 
improved. (12~ The need for such improvement can be understood based on 
the following physical reasons. The magnetization mi at the site i comes (a) 
from the magnetizations of the neighbors of m i and (b) from m i itself. The 
last contribution should be excluded by introducing the reaction field as 
was first pointed out by Onsager. (13~ This can be achieved by means of 
introducing the local susceptibility ;(ii at the site i, 

Zii =/~(1 - m~) (2.2) 

With such a susceptibility one can write the following result for the field 
h/(~:) 

"hi = hi + ~', Ji ,(m, - m i z S i z )  (2.3) 
l 

The field hi given in Eq. (2.l) needs to be replaced by that given by Eq. (2.3). 
Although the above arguments are very plausible for the case of the 

Ising model, their extension to the case of Potts model is by no means 
systematic. (s) Here, I demonstrate that development of the path integral 
formalism for the Ising model provides a systematic way of obtaining the 
Onsager reaction field terms and is easily generalizable to the case of the 
Potts model to be discussed below. 

To proceed, the following steps are necessary. First, the combined use 
of Eqs. (2.1) and (2.3) produces the following equation: 

tanh-1 mi = fl Z J i j m j -  f12 ~ J~(1 --m~)m i + h i (2.4) 
? J 
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Second, Eq. (2.4) can be obtained as a first functional derivative (with 
respect to mi) of the free energy functional (5) 

) ~[-{mi}] = - ~  . . Jijmimj +~  . In 
l,J 

1 ~ ,  ( 1 - m 2 ) j 2 ( 1 - m  2) (2.5) 
4fl i,i 

Here and below the prime on the summation sign indicates that the 
diagonal terms are being omitted. Third, Eq. (2.5) can be obtained from the 
path integral representation of the Ising model. Following ref. 14, we can 
write the partition function Z for the Ising model as 

No 

f lq dcpiexp{-flS[q~,, hi]} (2.6) Z = Y  
i = l  

where X is some unimportant normalization factor and the action S is 
given by 

1 
S[~oi, hi] ~-~ ~ (~o i -hi)Si j l (~oj  - h j )  

t, j 

1 
~i ln[2 cosh(flcpi)] (2.7) 

In arriving at the result (2.7), some sort of regularization for the matrix J~y 

is required, in principle, as is explained in ref. 15. This regularization, 
however, is not going to affect the results presented below. Application of 
the saddle point method to Z produces 

Z .~ exp { - flS[(oi, hi] } (2.8) 

where the mean field c~i is obtained as solution of the saddle point equation 

6S = ~  j g l  ( ~ j -  h i ) -  tanh(fl@) (2.9) 
0 = ~ .  ~ i = 0 ,  j 

o r  

(oi = hi + ~ Jo tanh(fl~j) (2.10) 
J 
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Since in this approximation the free energy F ~  S[q3i, hi], one obtains for 
the mean field magnetization 

6S 
- J~ (q~j-ns) (2.11) m i  - -  E 1 - , 

6hi 
J 

Combining Eqs. (2.9) and (2.11), one obtains mi=tanh(3q3i) (or 
1/fi tanh -1 mi = qSi). The combination of the last equation with Eq. (2.10) 
produces Eq. (2.1), as expected. To obtain Eq. (2.5), several additional 
steps are needed. First, one introduces the functional F[{mi}]  via the 
Legendre transform 

V[{m,}] = S[@, h,] + ~ h,(mj)mi (2.12) 
i 

so that the equation of state can be written as 

6F 
hi = (2.13) 

6mi 

The explicit form of F at the mean field saddle point level is easily obtained 
with the help of Eqs. (2.7)-(2.11) and Eq. (2.1) presented in the form 

h; = - ~, J~m; + ~ tanh -1 m i (2.14) 
J 

Combined use of Eqs. (2.8)-(2.11) and (2.14) produces a result, Eq. (2.5), 
without the last term. The last term can be obtained if the fluctuations 
around the mean field q3 i are taken into account. The use of Eq. (2.7) 
produces 

62S 

-'b(p i 6cpj ~oi= r 
= j ~ l  _ f l ( 1  - tanh 2 flqSi) 6 o 

= j ~ l  _ ~ ( l _ m ~ ) 6 o  " (2.15) 

where, in going from the first line to the second, Eqs. (2.9) and (2.11) were 
used. With the help of Eq. (2.15) one can easily obtain instead of Eq. (2.5) 
the following result(14): 

rE {m,} ] - g [ {m,}  ] 

=.~MF[{m,}]+~---~lndet[6jj--~(1--m~)J~] (2.16) 

822/58/1-2-24 
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where  ~ M F  denotes all terms, except the last, in Eq. (2.5). Using the fact 
that for any nonsingular matrix A, l n d e t A = t r l n A ,  and l n ( 1 - x ) =  
- ( x + x 2 / 2  + . . .  ), one expands the last term in Eq. (2.16). Keeping the 
terms through quadratic in J~, and taking into account that Jii = 0, one 
obtains back Eq. (2.5) and, whence, the result (2.4) [-or (2.3)]. The above 
derivation is purely formal and is not based on any plausible physical 
arguments. This turns out to be crucial in extending the above results to 
the case of the Potts model. 

3. PATH INTEGRAL R E P R E S E N T A T I O N  FOR THE POTTS 
M O D E L  A N D  THE M E A N  FIELD A P P R O X I M A T I O N  

The tradtional path integral representation of the Potts model is given 
in the paper by Zia and Wallace. (2) Their formulation is not suitable for 
obtaining the mean field results (for values of the order parameter outside 
the critical region) and the Onsager reaction field corrections. Here I 
provide another path integral treatment of the Ports model which directly 
generalizes the results for the Ising model presented in Section 2. The 
partition function for the q-state Potts model can be defined as  (16'17) 

{2} i,j i 

Here the Potts variable 2 takes the values 2 = 1, co,..., coq l, co = exp(2z~i/q). 
Typically K~ is nonzero only for the nearest neighbors. The coupling 
constant Kij and the magnetic field hi are explicitly dimensionless and {2} 
denotes, as usual, summation over the Ports variables 2 at each lattice site. 
To develop the path integral formalism two important identities are 
used (17) 

1 q 1 
6~,,~ = q  Z 2~2J-" (3.2) 

r=0 

1 q--1 
~2,,1 = q  E ~r (3.3) 

r=O 

Noticing that 2q= 1, one can rewrite the partition function (3.1) as follows: 

Z = T r  exp Ka Z 2r2j r+ Z 27 (3.4) 
{'~} i,i r=O " 

Taking into account that 2 - r =  (2*)" and using the Hubbard-Stratonovich 
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identity (with, perhaps, regularized Kij), (15) o n e  arrives at the following 
result: 

+2 ~ (ei~(r)2r-~-e}r)2ie~r)-[-2 2r (3.5) 
i 

where q~ = {e(l),..., e (q- 1/}, with the corresponding result for the complex 
conjugate. In the subsequent work it is convenient to rescale the fields 
ee---" ei / (2q) 1/2. In order to obtain the mean field results, the following 
ansatz should be used: e} ~ --* e l  ~ e l  ̀ ) --+ el  1) for 1 ~< r ~< q -  1. For the 
fixed i consider now the following average: 

F=Tr{~} exp [~q (e(~ + q) *(~ 

AI---~'-q ~ 2rAf--~q 2 2 r~_ ~ 2" (3.6) 
r = l  q - 1  

where the i dependence of the fields is temporarily suppressed. Evidently, 
the exponential term which contains the e (~ (e *(~ field can be taken out- 
side the trace. For this field the Hubbard-Stratonovich transformation can 
be performed backward, resulting in some unimportant constant which I 
shall ignore. To perform the summation over the set {2} in Eq. (3.6), the 
following equation is of great importance: 

q--1 2q 12__ 2 
2 2 " -  -6x ,  l ( q - 1 ) - ( 1 - f x  ) (3.7) 2--1 .i 

r = l  

With the help of Eq. (3.7), the summation over 2 in Eq. (3.6) can be readily 
performed, thus producing the final result, 

q -  1 e *~1)) h i  

+ (q - 1 ) exp 
h 1 

k q-- 1 2q 

The mean field partition function for the 
represented as 

q 
(e ~1) + e*(1))J (3.8) 

Potts model can now be 

ZMF = JV f D i e  (1), e *(I)] e x p { - S [ e  (1), e*(1) ]  } (3.9) 
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where the ation S is given by 

S[~o(1), ~0,(1) ] q -  1 =--~-q ~ ~~ 

- ~ In {exp I ~ q  1 (rP'l) + ~o*(1)) + h 1 

+ ( q -  1)exp(  hi (D I1 ) "~" q) : (1)~ "~ 
q-- 1 2q JJ  (3.10) 

Minimization of the action produces 

E - t  -(1) Y l i  - -  Y 2 i  K• ~pj - (3.11) 
j Yli + ( q -  1)Y2i 

with a similar expression for the complex conjugate field. Here 

Yl/= exp [ -~-q q-- 1 (qS~(~)+ qS*(~)) + h~] 

hi 1 (3.12) 
Yzi ~-exp q -  1 2q ' 

and the overbars denote the mean field saddle point approximation as in 
Section 2. On the other hand, as in the case of the Ising model, the 
magnetization mi at the mean field level is given by 

0 in Z M F  Y l i  - -  Y 2 i  
mi - - -  (3.13) 

Ohi Yli + (q - 1 ) Y2i 

where ZMF --~ exp{ - S[(/9 (1), (~,(1)] }. 
Combining Eqs. (3.11) and (3.13) produces 

cPi(1)= ~ Kom ~ (3.14) 
J 

with a similar expression for q~,(1). Using Eqs. (3.12)-(3.14), one easily 
obtains 

mi - (3.15) ~1~ + (q- 1)p2i 
where 

 li exp(   mj+ i)  316at 

 2i--exp( ) ,316b, 



Potts Model 363 

This can be somewhat rearranged to produce 

q ~---m7 -----~-- Kom j (3.17) 

The last result coincides with that given in ref. 16. For q = 2  (the lsing 
model case) one obtains back Eq. (2.4) (without the reaction field term) if 
one recalls that tanh-1 x = 1/2 In [(1 + x ) / ( 1 -  x)]. 

As before [see Eq. (2.12)], it is useful to introduce the thermodynamic 
potential F[{mi} ] via a Legendre transform. Using Eqs. (3.10), (3.14), and 
(3.17), one obtains after some algebra, instead of Eq. (2.12), the following 
result: 

~F[  {m,} ]  - f lY [ { rn~ } ]  

_ l q - 1  2, m ,K~jmj+l~{[ l+(q_ l )m,]  
2 q i,y q . 

•  + ( q -  1)m,] + ( q -  1 ) ( 1 - m , ) l n  (1-m~)} (3.18) 

where the unimportant constant - N l n  q was omitted. The last result 
coincides with that given in refs. 9 and 16. The Ising model case (q = 2) is 
obtained in conventional notations (14~ if one redefines the coupling 
constant KiJ2--+ Kii, or, for general q, K,jq ~ Ko. The given analysis 
accomplishes the mean field saddle point treatment of the Potts model. 

4. ONSAGER REACTION FIELD FOR THE POTTS MODEL 

In Section 2 the use of the path integral methods made it possible to 
obtain in a systematic fashion the one-loop fluctuation corrections to the 
mean field results for the Ising model. In developing the above methods for 
the Potts model, it. is essential to reproduce the Ising model results (q = 2). 
This is essential for two reasons: first, for requirements of consistency, and, 
second, because the previous treatments (s) ignored the consistency require- 
ment, which resulted in rather cumbersome and inconclusive results. 

Taking into account Eq. (2.15), in the present case one has to calculate 
the fluctuation matrix obtained from the following functional: 

1 q 1 

!,." r =  1 

- ~ l n T r  exp 1 ~ q)*(r/2~+ (r~ ,~ ~o, L + ~ (4.1) 
. {;.} 
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To develop the general method of calculation, it is instructive to consider 
first the Ising model case, q = 2. In this case the Tr in Eq. (4.1) is easily per- 
formed and one obtains, after obvious rescaling of the fields ~o~ .-+ ~oj2 and 
the coupling constant K0, the following familiar result (h+ = 0)(14): 

1 1 
SIsing 5 ~  ~91i f id l (~ l Y q'- 2 2 K 1 = q?2i '2" q~2j-~ln(2c~ (4.2) 

z,y t,J i 

In arriving at Eq. (4.2), the field ~pl 1) was represented as q~la)= ~01~ + iq~2+, 
etc. Minimization of Eq. (4.2) produces back Eq. (2.15), this time written in 
the form 

•2SIsing 6~0~ 6~0 U ~,= ~, = K ~  -- (1 -- m2)~o. (4.3) 

Use of Eq. (3.11) indicates that 

~2SIsing 

~2i = ~2i 

= 0 (4.4) 

while Eq. (4.2) yields 

O2SIsing = K ;1 (4.5) 

The last fluctuation matrix is of no importance, however, because it does 
not contain the order parameter. 

Going back to the general case of arbitrary q, rescaling the fields in 
Eq. (4.1), and using the real fields instead of the complex, one can rewrite 
Eq. (4.1) in the following form (note: K U +-+ Ku/q,  h = O, ~o ~ ~o/q): 

, q l  
: "k'li *~ij ~l*lj " 2  2 "k'2irn (r) ~7"~ tj 1 rn(r)tl"Zj 

i,j r = 1 i,j 

- l -e l i  (z ,  + ,Z? ~) + z~o2, ( ~  - 2 3 ]  
�9 { ~ }  

Now one has to calculate the following matrix elements: 

~28  q~l rl ~52S 

v"vii v'4"lJ =q~li w'tP'li WtUlJ q~i =q31i 

(4.6) 

(4.7) 
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This can be accomplished if one recognizes that, while taking the functional 
derivatives using functional (4.6), only the fields with the f ixed "color" 
index r (or r and l) should not be of the mean field type from the outset. 
To calculate the second functional derivative, which, for example, is 
diagonal in color index r, consider the following auxiliary functional (the 
spatial index i is suppressed): 

I = T r  exp{q5115;.,~(q 1 ) - (1 -c5~  )]+(qo] n 0,)  ~ - -  .,1 __ ~()~ .~_ ~ - - r )  } (4.8) 
{;.} 

Here Eqs. (3.6) and (3.7) were used. The trace now can be easily computed, 
thus yielding the final result 

I =  e x p [ ( q -  1)0~ -~- ( q ~ r ) - -  q) l )  ] 

(4.9) 

Taking the logarithm of I and functionally differentiating, one obtains, 

5cplr) l n I  =m (4.10) 

where Eqs. (3.12)-(3.16) were used along with an obvious result 

q--1  
coir= - 1  (4.11) 

i = l  

Before taking the second functional derivative, however, it is useful to 
remember that 

{1, 
co2,i = q = 2 (4.12) 

i=1 1, q4:2 

which comes directly from the definition of co and the fact that for q = 2 the 
index r can be only one. Using Eqs. (4.13), (4.10), and (4.12), one easily 
obtains 

~(p (r) &p(,) 
i j (Plr)= (Pi 

= K / ) - I _ / V  �9 t{e~,.+.ea2(1) 

x E(26q,2 - 1 ) + q -  1]} 6ij +m~aij (4.13) 

where 

,4/" =ea~+ ( q -  1)e a2' e a~ = e x p [ ( q -  1)01], e "2 = e x p ( - ~ l )  
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a n d  (Pl is given by Eq. (3.14) while ~2 = 0 at the mean field level. For q = 2 
the old result, Eq. (4.3), is readily reproduced, as expected. Computation of 
other functional derivatives proceeds analogously. In particular, one has 
( r # l )  

2S I =- -~ /"  'mi(1--mi)(~ U ( ) (z) (4.14) 

also 

c$2S e~25 )= 

and 

qo (2) = 0 

1 ea2 
= K (  +~/U * T E ( 2 6 q , 2 - 1 ) - ( q - 1 ) ]  (4.15a) 

a2s I 
,~tn (r) tn (l) ] = 0 (4.15b) 
u~U2i ' g 2 j  I~p~r)= qo(2)=O 

Finally, for the cross terms, one obtains 

6 2 S  ~&= o, 
~rn ( r )  ~5(D~5 ) ~-~ 0 (4.16) 
v"/" 1 i r 

Gl=~71=o 
for all r and/ .  

Equation (4.16) indicates that the fluctuation matrix has the block- 
diagonal form, which significantly simplifies the rest of the calculations. In 
Particular, I begin with a computation of the one-loop correction to the 
mean field free energy result, Eq. (3.18). This correction is the most easily 
computed for the case of uniform magnetization mi = m. In this case, the 
use of Fourier transform methods (1) by analogy with the Ising model case 
produces the following results for the corresponding fluctuation matrices 
(for the fixed wave vector k) 

1 2 -.. q - 1  

A1 A 2 --. A 2 
~52S A 2 A1 -.. A 2 

= . . .  

""  AI 

1 

2 

q - 1  

(4.17) 

where 

A~ = [ K ( k ) ] - l -  J V ' - ~ { e ~ ' + e a 2 ( l / 2 ) [ ( 2 6 q , 2  - 1 ) + q -  1]} + m  2 
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and al = (q -1 )zKm,  a 2 = - z K m ,  where z is the coordination number of 
the lattice and K is the strength of the nearest neighbor bond interaction; 
A 2 = - y - i m ( 1  -m) .  Also, one has 

where 

1 2 q - 1  

0 A3 0 ... ) 1 
(~28 [ 0 A 3 . - .  2 

0 - - .  A 3 q 1 

(4.18) 

A 3 = [K(k)] 1 + o,f--lea2(1/2)[(26q.2 _ 1) - ( q -  1)] = 2(k) (4.19) 

As usual, one subsequently expands K - X ( k ) ~ K - l ( O ) + c ~ k  2, where c~ is 
related to the coordination number of the lattice. (1'~4"~s) The determinant of 
the matrix given by Eq. (4.17) is a circulant and can be easily 
diagonalized, (18) with the following results for eigenvalues: 

)q(k) =AI  + ( q -  2)A2 (4.20) 

2i(k) = A ~ - A  2 (4.21) 

for i=2 ,  3 ..... q - 1 .  
The matrix given by Eq. (4.18) is already diagonal. The use of Eqs. 

(4.18)-(4.21) allows one to write for the fluctuation corrections to the free 
energy the following result: 

1 ddk q - 2 dak 
fi~7 =~  f .  ~ In 2,(k) + --f--  (~)~)d f In 22(k) 

q -  1 ddk 
+ T f (-2~)e in J.(k) (4.22) 

This result should be added to the homogeneous form of Eq. (3.18). Equa- 
tion (4.22) produces automatically the Ising model result for q = 2 (1'~4) and 
is valid for arbitrary q. One can study, in principle, at this point how the 
one-loop fluctuation corrections affect the value of q at which the first- 
order phase transition takes place. (s) Instead, I provide below the deriva- 
tion of the Onsager reaction field terms. To this purpose, it is useful not do 
diagonalize the fluctuation matrices in k-space, which allows one to obtain 
a closed-form result, Eq. (4.22), for the fluctuation corrections. Using 
results of Section 3, it is necessary to consider the off-diagonal terms, 
Eq. (4.14), perturbatively. Averaging with the Gaussian measure given by 
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the kernel (4.13) allows one to easily obtain the lowest order off-diagonal 
fluctuation correction to the free energy given by 

f i ~ - ~ d  = (q_ 1 ) ( q - 2 ) ~  I~omj(1 -m/)  t~ji(1 --mi)m i (4.23) 
i , j  

where 
I ( i / = [ K - l -  gV" l{eal +ea2 

x �89 [(2gq,2 - 1 ) + q -  1 ] I +  m2I]~ 1 

=ZK'+[I- '#"  '{e~'+e a2 
1 

x �89 - 1 ) + q -  I ] K + m 2 K ] ~  ' 

~ K r  X{ea' + ea2 

x �89  ... (4.24) 

In view of Eqs. (4.23) and (4.24) it is sufficient to write 

Ki/ ~ Kis (4.25) 

The higher order terms could be included, if necessary. The use of 
Eq. (4.25) brings the final expression for the off-diagonal contribution to 
the Onsager's reaction field terms, 

f l Y ~ = ( q - 1 ) ( q - 2 )  Z K~m/(1-m/)Ksi(1-m+)rn ~ (4.26) 
i , j  

Consider now the diagonal contributions. Using Eq. (4.13) along with 
formula In det A = tr In A and expanding the logarithm, one obtains [with 
accuracy up to O(K 2) terms], by analogy with the Ising model case (see 
Section 3), the following result: 

3 ~ 1  =q-2 1 trln { ( c ~ - q  f 

- q 2 O(K~.)  (4.27) 

In arriving at Eq. (4.27), the exponential factors in Eq. (4.13) were 
expanded and only the lowest orders in K• terms were kept. Consider 
finally the contribution coming from the fluctuation kernel, Eq. (4.15). 
Using the same kind of approximations as in the previous case, one obtains 

fl~=q-ltrlnI6~/+@q'2-q);(1-~K'~m')Ku]2 (4.28) 
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This term produces, however, zero if the accuracy up to O(K~) is 
desired (because Kii = 0 by definition). Collecting all terms [see Eqs. (3.18), 
(4.26)-(4.28)] one obtains the free energy with Onsager's corrections in the 
following form: 

1 f l ~ -  21 q-lq ~'i,j miKumj+ q-~- {[1 + ( q -  1)m~] 

xln[1 + ( q -  1)rail + ( q -  1) (1-m~) ln(1-m~)}  

( ) q -  1 y ,  1 q2 4q 2 ~,j 

+ ( q - 1 ) ( q - 2 )  ~ ' K u m / ( 1 - - m / )  
i,j 

• Kji(1 --mi)rni + O(K~.) (4.29) 

Here the rescaling of the fields q~ and the coupling constant K defined 
before Eq. (4.6) was taken into account. Notice that the inclusion of these 
Onsager terms does not change the mean field prediction about the first- 
order phase transition for q > 2 coming from the mean field analysis, ~ so 
that the exact result qc = 4 for d =  2 ~~ should be understood, as before, in 
the asymptotic sense of large-q expansions. ~ Equation (4.29) coincides 
with Eq. (2.5) for q = 2 ,  as expected (if the term K~/2--*Key, as stated in 
Section 3). In case the problem of percolation (q=  1) is considered, the 
above expression for the free energy should actually be divided by the 
factor of q -  1. For more details, see refs. 9 and 19. 

5. D I S C U S S I O N  

In this paper a new systematic path integral treatment of the Ports 
model has been developed. This treatment can be considered as a direct 
extension of the similar treatment for the Ising model. (14) Previous path 
integral treatments of the Ports model are based on the work by Zia and 
Wallace. (2) Their method is not suitable, however, for obtaining the 
systematic mean field corrections in cases when the order parameter is not 
small, so that the functional integral treatment of the Potts model was 
noticeably different from that of the Ising model. I hope that the above 
derivation of the Onsager reaction field corrections for the Potts model will 
be especially useful in those cases when the randomness is important. In 
particular, using the result of the previous section, it is now rather 
straightforward to develop the TAP approach (12) for the Potts spin glass. 
The results are especially useful in determining the correct Potts spin-glass 
transition temperature. (5,~2) It is well known that the inclusion of the 
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Onsager  reac t ion  field correc t ions  within the T A P  a p p r o a c h  to the mean  
field Ising mode l  p roduces  results which are in agreement  with that  
ob ta ined  by Sher ington  and  K i r k p a t r i c k  (11~ by repl ica- t r ick  methods .  The 
var ious  rea l -space  r enormal i za t ion  g roup  me thods  (19) might  benefit also 
from the presented  development .  
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